

In the figure to the left, the first column represents gas particles with little energy. A thermometer placed in contact with this group of particles would indicate a very low temperature. The column to the right represents particles with a high enough speed and energy to spread out inside the column. A thermometer placed in this group would show a high temperature.

When the state of matter changes its phase, the temperature and energy of matter also changes. At low temperature and energy we have a solid phase. At a medium temperature and energy we have a liquid phase, and at a high temperature and energy we have a gaseous phase.

A simple formula gives us the average speed, V, of water molecules in meters per second (m/s) for a given temperature in degrees Celsius, T:

$$V^2 = 1380(273+T)$$

Problem 1 – What is the speed of an average water molecule near A) the freezing point of water at 0° C? B) The boiling point of water at 100° C?

Problem 2 - The kinetic energy in Joules for all of the water molecules in a gallon of water, which has a mass of about $M=4.0\,$ kilograms, and an average molecule speed of V in meters/sec, is given by the formula:

$$K.E. = \frac{1}{2}MV^2$$

To the nearest Joule, what is the kinetic energy of a 1 gallon of water at the temperatures given in Problem 1?

Problem 3 - If you heated the one gallon of water from 0°C to 100°C, how much 'thermal' energy would you have to add?

Problem 1 - What is the speed of an average water molecule near A) the freezing point of water at 0° C? B) The boiling point of water at 100° C?

Answer: From the formula:

A) $V = (1380(273+(+0))^{1/2} = (376740)^{1/2} = 614 \text{ meters/sec.}$

B) $V = (1380(273+(100))^{1/2} = (514740)^{1/2} = 717 \text{ meters/sec.}$

Problem 2 - The kinetic energy in Joules for all of the water molecules in a gallon of water, which has a mass of about M=4 kilograms, and an average molecule speed of V in meters/sec, is given by the formula:

$$K.E. = \frac{1}{2}MV^2$$

To the nearest Joule, what is the kinetic energy of a 1 gallon of water at the temperatures given in Problem 1?

Answer: A) For $+0^{\circ}$ C, we calculated an average speed of 614 m/s, so the kinetic energy of the water is KE = 1/2 $(4.0)(614)^{2}$ = **753,992 Joules**.

B) For 100° C we have V = 717 m/s, so KE = $1/2(4.0)(717)^2 = 1,028,178$ Joules.

Problem 3 - If you heated the one gallon of water from 0° C to 100° C, how much 'thermal' energy would you have to add?

Answer: You have to add the difference in energy (1,028,178 - 753,992) = 274,186 **Joules** to heat the gallon of water to its boiling point at 100° C.

Note: A typical hotplate at a temperature of 400 C generates about 1000 Joules/second, so to heat the gallon of water to make it boil would take about 274186/4000 or about 4 minutes at this hotplate setting.